Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.24.485596

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with various neurological complications. SARS-CoV-2 infection induces neuroinflammation in the central nervous system (CNS), whereat the olfactory bulb seems to be involved most frequently. Here we show differences in the neuroinvasiveness and neurovirulence among SARS-CoV-2 variants in the hamster model five days post inoculation. Replication in the olfactory mucosa was observed in all hamsters, but most prominent in D614 inoculated hamsters. We observed neuroinvasion into the CNS via the olfactory nerve in D614G-, but not Delta (B.1.617.2)- or Omicron BA.1 (B.1.1.529) inoculated hamsters. Neuroinvasion was associated with neuroinflammation in the olfactory bulb of hamsters inoculated with D614G but hardly in Delta or Omicron BA.1. Altogether, this indicates that there are differences in the neuroinvasive and neurovirulent potential among SARS-CoV-2 variants in the acute phase of the infection in the hamster model.


Subject(s)
Coronavirus Infections , Central Nervous System Diseases , COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.15.484448

ABSTRACT

The Omicron BA.1 (B.1.1.529) SARS-CoV-2 variant is characterized by a high number of mutations in the viral genome, associated with immune-escape and increased viral spread. It remains unclear whether milder COVID-19 disease progression observed after infection with Omicron BA.1 in humans is due to reduced pathogenicity of the virus or due to pre-existing immunity from vaccination or previous infection. Here, we inoculated hamsters with Omicron BA.1 to evaluate pathogenicity and kinetics of viral shedding, compared to Delta (B.1.617.2) and to animals re-challenged with Omicron BA.1 after previous SARS-CoV-2 614G infection. Omicron BA.1 infected animals showed reduced clinical signs, pathological changes, and viral shedding, compared to Delta-infected animals, but still showed gross- and histopathological evidence of pneumonia. Pre-existing immunity reduced viral shedding and protected against pneumonia. Our data indicate that the observed decrease of disease severity is in part due to intrinsic properties of the Omicron BA.1 variant.


Subject(s)
Lung Diseases , Pneumonia , COVID-19
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.23.481644

ABSTRACT

The emergence and rapid spread of SARS-CoV-2 variants may impact vaccine efficacy significantly. The Omicron variant termed BA.2, which differs genetically substantially from BA.1, is currently replacing BA.1 in several countries, but its antigenic characteristics have not yet been assessed. Here, we used antigenic cartography to quantify and visualize antigenic differences between SARS-CoV-2 variants using hamster sera obtained after primary infection. Whereas early variants are antigenically similar, clustering relatively close to each other in antigenic space, Omicron BA.1 and BA.2 have evolved as two distinct antigenic outliers. Our data show that BA.1 and BA.2 both escape (vaccine-induced) antibody responses as a result of different antigenic characteristics. Close monitoring of the antigenic changes of SARS-CoV-2 using antigenic cartography can be helpful in the selection of future vaccine strains.

4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.07.21252267

ABSTRACT

Assays to measure SARS-CoV-2-specific neutralizing antibodies are important to monitor seroprevalence, to study asymptomatic infections and to reveal (intermediate) hosts. A recently developed assay, the surrogate virus-neutralization test (sVNT) is a quick and commercially available alternative to the 'gold standard' virus neutralization assay using authentic virus, and does not require processing at BSL-3 level. The assay relies on the inhibition of binding of the receptor binding domain (RBD) on the spike (S) protein to human angiotensin-converting enzyme 2 (hACE2) by antibodies present in sera. As the sVNT does not require species- or isotype-specific conjugates, it can be similarly used for antibody detection in human and animal sera. In this study, we used 298 sera from PCR-confirmed COVID-19 patients and 151 sera from patients confirmed with other coronavirus or other (respiratory) infections, to evaluate the performance of the sVNT. To analyze the use of the assay in a One Health setting, we studied the presence of RBD-binding antibodies in 154 sera from nine animal species (cynomolgus and rhesus macaques, ferrets, rabbits, hamsters, cats, cattle, mink and dromedary camels). The sVNT showed a moderate to high sensitivity and a high specificity using sera from confirmed COVID-19 patients (91.3% and 100%, respectively) and animal sera (93.9% and 100%), however it lacked sensitivity to detect low titers. Significant correlations were found between the sVNT outcomes and PRNT50 and the Wantai total Ig and IgM ELISAs. While species-specific validation will be essential, our results show that the sVNT holds promise in detecting RBD-binding antibodies in multiple species.


Subject(s)
COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.24.435771

ABSTRACT

SARS-CoV-2 attaches to angiotensin-converting enzyme 2 (ACE2) to gain entry into cells after which the spike protein is cleaved by the transmembrane serine protease 2 (TMPRRS2) to facilitate viral-host membrane fusion. ACE2 and TMPRRS2 expression profiles have been analyzed at the genomic, transcriptomic, and single-cell RNAseq level, however, biologically relevant protein receptor organization in whole tissues is still poorly understood. To describe the organ-level architecture of receptor expression, related to the ability of ACE2 and TMPRRS2 to mediate infectivity, we performed a volumetric analysis of whole Syrian hamster lung lobes. Lung tissue of infected and control animals were stained using antibodies against ACE2 and TMPRRS2, combined with fluorescent spike protein and SARS-CoV-2 nucleoprotein staining. This was followed by light-sheet microscopy imaging to visualize expression patterns. The data demonstrates that infection is restricted to sites with both ACE2 and TMPRRS2, the latter is expressed in the primary and secondary bronchi whereas ACE2 is predominantly observed in the terminal bronchioles and alveoli. Conversely, infection completely overlaps at these sites where ACE2 and TMPRSS2 co-localize.


Subject(s)
COVID-19 , Infections
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.15.435472

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is associated with a wide variety of neurological complications. Even though SARS-CoV-2 is rarely detected in the central nervous system (CNS) or cerebrospinal fluid, evidence is accumulating that SARS-CoV-2 might enter the CNS via the olfactory nerve. However, what happens after SARS-CoV-2 enters the CNS is poorly understood. Therefore, we investigated the replication kinetics, cell tropism, and associated immune responses of SARS-CoV-2 infection in different types of neural cultures derived from human induced pluripotent stem cells (hiPSCs). SARS-CoV-2 was compared to the neurotropic and highly pathogenic H5N1 influenza A virus. SARS-CoV-2 infected a minority of individual mature neurons, without subsequent virus replication and spread, despite ACE2, TMPRSS2 and NPR1 expression in all cultures. However, this sparse infection did result in the production of type-III-interferons and IL-8. In contrast, H5N1 virus replicated and spread very efficiently in all cell types in all cultures. Taken together, our findings support the hypothesis that neurological complications might result from local immune responses triggered by virus invasion, rather than abundant SARS-CoV-2 replication in the CNS.


Subject(s)
COVID-19
7.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-105265.v1

ABSTRACT

Convalescent plasma could be an inexpensive and widely available treatment for COVID-19 patients but reports on effectiveness are inconclusive. We collected convalescent plasma from donors with high titers of neutralizing anti-SARS-CoV-2 antibodies effectively blocking SARS-CoV-2 infection in vitro. In a randomized clinical trial of 86 COVID-19 patients, no overall clinical benefit of 300 mL convalescent plasma was found in patients hospitalized for COVID-19 in the Netherlands. Using a comprehensive translational approach, we unraveled the virological and immunological responses following plasma treatment which helps to understand which COVID-19 patients may benefit from this therapy and should be the focus of future studies. Convalescent plasma treatment in this patient group did not improve survival, had no effect on the clinical course of disease, nor did plasma enhance viral clearance in the respiratory tract, influence anti-SARS-CoV-2 antibody development or serum proinflammatory cytokines levels. The vast majority of patients already had potent neutralizing anti-SARS-CoV-2 antibodies at hospital admission and at comparable titers as the carefully selected plasma donors. Together, these data indicate that the variable effectivity observed in trials on convalescent plasma for COVID-19 may be explained by the timing of treatment and varying levels of preexisting anti-SARS-CoV-2 immunity in patients. It also substantiates that convalescent plasma should be studied as early as possible in the disease course or at least preceding the start of an autologous humoral response. Trial registration: Clinicaltrials.gov: NCT04342182


Subject(s)
COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.11.04.361154

ABSTRACT

Containment of the COVID-19 pandemic requires reducing viral transmission. SARS-CoV-2 infection is initiated by membrane fusion between the viral and host cell membranes, mediated by the viral spike protein. We have designed a dimeric lipopeptide fusion inhibitor that blocks this critical first step of infection for emerging coronaviruses and document that it completely prevents SARS-CoV-2 infection in ferrets. Daily intranasal administration to ferrets completely prevented SARS-CoV-2 direct-contact transmission during 24-hour co-housing with infected animals, under stringent conditions that resulted in infection of 100% of untreated animals. These lipopeptides are highly stable and non-toxic and thus readily translate into a safe and effective intranasal prophylactic approach to reduce transmission of SARS-CoV-2. One-sentence summaryA dimeric form of a SARS-CoV-2-derived lipopeptide is a potent inhibitor of fusion and infection in vitro and transmission in vivo.


Subject(s)
COVID-19
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.04.283358

ABSTRACT

The SARS-CoV-2 virus has been spreading rapidly and across the globe since first being reported in December 2019. To understand the evolutionary trajectory of the coronavirus, phylogenetic analysis is needed to study the population structure of SARS-CoV-2. As sequencing data worldwide is accruing rapidly, grouping them into clusters helps to organize the landscape of population structures. To effectively group these data, computational methodologies are needed to provide more productive and robust solutions for clustering. In this study, using the single nucleotide polymorphisms of the viral sequences as input features, we utilized three clustering algorithms, namely K-means, hierarchical clustering and balanced iterative reducing and clustering using hierarchies to partition the viral sequences into six major clusters. Comparison of the three clustering results reveals that the three methods produced highly consistent results, but K-means performed best and produced the smallest intra-cluster pairwise genetic distances among the three methods. The partition of the viral sequences revealed that the six clusters differed in their geographical distributions. Using comprehensive approaches to compare the diversity and selective pressure across the clusters, we discovered a high genetic diversity between the clusters. Based on characteristics of the mutation profiles in each cluster along with their geographical distributions and evolutionary histories, we identified the extent of molecular divergence within and between the clusters. The identification of the mutations that are strongly associated with clusters have potential implications for diagnosis and pathogenesis of COVID-19. In addition, the clustering method will enable further study of variant population structures in specific regions of these fast-growing viruses.


Subject(s)
COVID-19
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.04.282558

ABSTRACT

Receptor binding studies using recombinant SARS-CoV proteins have been hampered due to challenges in approaches creating spike protein or domains thereof, that recapitulate receptor binding properties of native viruses. We hypothesized that trimeric RBD proteins would be suitable candidates to study receptor binding properties of SARS-CoV-1 and -2. Here we created monomeric and trimeric fluorescent RBD proteins, derived from adherent HEK293T, as well as in GnTI mutant cells, to analyze the effect of complex vs high mannose glycosylation on receptor binding. The results demonstrate that trimeric fully glycosylated proteins are superior in receptor binding compared to monomeric and immaturely glycosylated variants. Although differences in binding to commonly used cell lines were minimal between the different RBD preparations, substantial differences were observed when respiratory tissues of experimental animals were stained. The RBD trimers demonstrated distinct ACE2 expression profiles in bronchiolar ducts and confirmed the higher binding affinity of SARS-CoV-2 over SARS-CoV-1. Our results show that fully glycosylated trimeric RBD proteins are attractive to analyze receptor binding and explore ACE2 expression profiles in tissues.

11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.24.264564

ABSTRACT

The major challenge of the COVID-19 health crisis is to identify the factors of susceptibility to SARS-Cov2 in order to adapt the recommendations to the populations and to reduce the risk of getting COVID-19 to the most vulnerable people especially those having chronic respiratory diseases (CRD) including cystic fibrosis (CF) and chronic pulmonary respiratory diseases (COPD). Airway epithelial cells (AEC) are playing a critical role in the immune response and in COVID-19 severity. SARS-CoV-2 infects the airways through ACE2 receptor and the host protease TMPRSS2 was shown to play a major role in SARS-CoV-2 infectivity. In this report we showed that Pseudomonas aeruginosa and its virulence factor flagellin (Fla-PA), a ligand of Toll-Like receptor 5 are able to increase TMPRSS2 expression in control and CF AEC. In contrast, no effect was observed with recombinant Salmonella typhimurium flagellin, used as an adjuvant in the clinical development of new vaccines against respiratory viruses. Considering the urgency of the health situation, this result is of major significance for patients with CRD (COPD, CF) which are frequently infected and colonized by P. aeruginosa during the course of the disease. In the general population, a P. aeruginosa ventilator-associated pneumonia in SARS-CoV-2 patients under intubation in intensive care units could be also deleterious and should be monitored with care.


Subject(s)
Respiratory Tract Diseases , Lung Diseases , Severe Acute Respiratory Syndrome , Cystic Fibrosis , Chronic Disease , COVID-19
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.24.264895

ABSTRACT

SARS-CoV-2 has rapidly transmitted worldwide and results in the COVID-19 pandemic. Spike glycoprotein on surface is a key factor of viral transmission, and has appeared a lot of variants due to gene mutations, which may influence the viral antigenicity and vaccine efficacy. Here, we used bioinformatic tools to analyze B-cell epitopes of prototype S protein and its 9 common variants. 12 potential linear and 53 discontinuous epitopes of B-cells were predicted from the S protein prototype. Importantly, by comparing the epitope alterations between prototype and variants, we demonstrate that B-cell epitopes and antigenicity of 9 variants appear significantly different alterations. The dominant D614G variant impacts the potential epitope least, only with moderately elevated antigenicity, while the epitopes and antigenicity of some mutants(V483A, V367F, etc.) with small incidence in the population change greatly. These results suggest that the currently developed vaccines should be valid for a majority of SARS-CoV-2 infectors. This study provides a scientific basis for large-scale application of SARS-CoV-2 vaccines and for taking precautions against the probable appearance of antigen escape induced by genetic variation after vaccination. Author SummaryThe global pandemic of SARS-CoV-2 has lasted for more than half a year and has not yet been contained. Until now there is no effective treatment for SARS-CoV-2 caused disease (COVID-19). Successful vaccine development seems to be the only hope. However, this novel coronavirus belongs to the RNA virus, there is a high mutation rate in the genome, and these mutations often locate on the Spike proteins of virus, the gripper of the virus entering the cells. Vaccination induce the generation of antibodies, which block Spike protein. However, the Spike protein variants may change the recognition and binding of antibodies and make the vaccine ineffective. In this study, we predict neutralizing antibody recognition sites (B cell epitopes) of the prototype S protein of SARS-COV2, along with several common variants using bioinformatics tools. We discovered the variability in antigenicity among the mutants, for instance, in the more widespread D614G variant the change of epitope was least affected, only with slight increase of antigenicity. However, the antigenic epitopes of some mutants change greatly. These results could be of potential importance for future vaccine design and application against SARS-CoV2 variants.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.24.264630

ABSTRACT

Effective clinical intervention strategies for COVID-19 are urgently needed. Although several clinical trials have evaluated the use of convalescent plasma containing virus-neutralizing antibodies, the effectiveness has not been proven. We show that hamsters treated with a high dose of human convalescent plasma or a monoclonal antibody were protected against weight loss showing reduced pneumonia and pulmonary virus replication compared to control animals. However, a ten-fold lower dose of convalescent plasma showed no protective effect. Thus, variable and relatively low levels of virus neutralizing antibodies in convalescent plasma may limit their use for effective antiviral therapy, favouring concentrated, purified (monoclonal) antibodies.


Subject(s)
COVID-19
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.22.258459

ABSTRACT

We screened steroid compounds to obtain a drug expected to block host inflammatory responses and MERS-CoV replication. Ciclesonide, an inhaled corticosteroid, suppressed replication of MERS-CoV and other coronaviruses, including SARS-CoV-2, the cause of COVID-19, in cultured cells. The effective concentration (EC90) of ciclesonide for SARS-CoV-2 in differentiated human bronchial tracheal epithelial cells was 0.55 M. Ciclesonide inhibited formation of double membrane vesicles, which anchor the viral replication-transcription complex in cells. Eight consecutive passages of 43 SARS-CoV-2 isolates in the presence of ciclesonide generated 15 resistant mutants harboring single amino acid substitutions in non-structural protein 3 (nsp3) or nsp4. Of note, ciclesonide still suppressed replication of all these mutants by 90% or more, suggesting that these mutants cannot completely overcome ciclesonide blockade. These observations indicate that the suppressive effect of ciclesonide on viral replication is specific to coronaviruses, highlighting it as a candidate drug for the treatment of COVID-19 patients. ImportanceThe outbreak of SARS-CoV-2, the cause of COVID-19, is ongoing. To identify the effective antiviral agents to combat the disease is urgently needed. In the present study, we found that an inhaled corticosteroid, ciclesonide suppresses replication of coronaviruses, including beta-coronaviruses (MHV-2, MERS-CoV, SARS-CoV, and SARS-CoV-2) and an alpha-coronavirus (HCoV-229E) in cultured cells. The inhaled ciclesonide is safe; indeed, it can be administered to infants at high concentrations. Thus, ciclesonide is expected to be a broad-spectrum antiviral drug that is effective against many members of the coronavirus family. It could be prescribed for the treatment of MERS, and COVID-19.


Subject(s)
Coronavirus Infections , COVID-19
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.24.265090

ABSTRACT

Given the aggressive spread of COVID-19-related deaths, there is an urgent public health need to support the development of vaccine candidates to rapidly improve the available control measures against SARS-CoV-2. To meet this need, we are leveraging our existing vaccine platform to target SARS-CoV-2. Here, we generated cellular heat shock chaperone protein, glycoprotein 96 (gp96), to deliver SARS-CoV-2 protein S (spike) to the immune system and to induce cell-mediated immune responses. We showed that our vaccine platform effectively stimulates a robust cellular immune response against protein S. Moreover, we confirmed that gp96-Ig, secreted from allogeneic cells expressing full-length protein S, generates powerful, protein S polyepitope-specific CD4+ and CD8+ T cell responses in both lung interstitium and airways. These findings were further strengthened by the observation that protein-S -specific CD8+ T cells were induced in human leukocyte antigen (HLA)-A2-02-01 transgenic mice thus providing encouraging translational data that the vaccine is likely to work in humans, in the context of SARS-CoV-2 antigen presentation.


Subject(s)
COVID-19
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.16.044503

ABSTRACT

SARS-CoV-2, a coronavirus that newly emerged in China in late 2019 1,2 and spread rapidly worldwide, caused the first witnessed pandemic sparked by a coronavirus. As the pandemic progresses, information about the modes of transmission of SARS-CoV-2 among humans is critical to apply appropriate infection control measures and to slow its spread. Here we show that SARS-CoV-2 is transmitted efficiently via direct contact and via the air (via respiratory droplets and/or aerosols) between ferrets. Intranasal inoculation of donor ferrets resulted in a productive upper respiratory tract infection and long-term shedding, up to 11 to 19 days post-inoculation. SARS-CoV-2 transmitted to four out of four direct contact ferrets between 1 and 3 days after exposure and via the air to three out of four independent indirect recipient ferrets between 3 and 7 days after exposure. The pattern of virus shedding in the direct contact and indirect recipient ferrets was similar to that of the inoculated ferrets and infectious virus was isolated from all positive animals, showing that ferrets were productively infected via either route. This study provides experimental evidence of robust transmission of SARS-CoV-2 via the air, supporting the implementation of community-level social distancing measures currently applied in many countries in the world and informing decisions on infection control measures in healthcare settings 3.


Subject(s)
Respiratory Tract Infections
17.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.03.17.995639

ABSTRACT

A novel coronavirus, SARS-CoV-2, was recently identified in patients with an acute respiratory syndrome, COVID-19. To compare its pathogenesis with that of previously emerging coronaviruses, we inoculated cynomolgus macaques with SARS-CoV-2 or MERS-CoV and compared with historical SARS-CoV infections. In SARS-CoV-2-infected macaques, virus was excreted from nose and throat in absence of clinical signs, and detected in type I and II pneumocytes in foci of diffuse alveolar damage and mucous glands of the nasal cavity. In SARS-CoV-infection, lung lesions were typically more severe, while they were milder in MERS-CoV infection, where virus was detected mainly in type II pneumocytes. These data show that SARS-CoV-2 can cause a COVID-19-like disease, and suggest that the severity of SARS-CoV-2 infection is intermediate between that of SARS-CoV and MERS-CoV. One Sentence SummarySARS-CoV-2 infection in macaques results in COVID-19-like disease with prolonged virus excretion from nose and throat in absence of clinical signs.


Subject(s)
Coronavirus Infections , Adenocarcinoma, Bronchiolo-Alveolar , Severe Acute Respiratory Syndrome , COVID-19 , Respiratory Insufficiency
SELECTION OF CITATIONS
SEARCH DETAIL